Intro to Machine Learning
• Intro to Machine Learning - what is learning?
• Data - Matrix type
 - algebraic notations
• Heuristics and Quantitative rules
• Error measurement
 - training VS testing error, Cross Validation
 - overfitting
What is machine learning? Supervised learning

- data given with labels
- but learning setup up to us
- ML algorithm up to us
- error measurement has to be meaningful
What is machine learning? Graph learning

- data defined by links or analogies or connections
- for example social networks, or web links
- task: identify object properties from links
- tasks: detect graph patterns
What is machine learning? Clustering

- data given without labels
- task: group similar data points

13 States clustered into 51 Custom Ecoregions
What is machine learning? Time series analysis

- data that evolves with time
- like stocks or patient records
- task: predict future behavior
- task: detect anomalies
Matrix data

- m datapoints/objects $X=(x_1, x_2, \ldots, x_d)$
- d features/columns f_1, f_2, \ldots, f_d
Heuristic rules / decisional

- If fever > 100, patient has flu
- If email contains words “free” or “porn”, it is spam
- If a web page contains ngram “Michael Jackson”, it is relevant to the user
- If age < 22 and sex = F and highschool_diploma = Yes, then eligible for application
- If income_per_capita <$1000, region prone to civil war
- If romantic = Yes and comedy = Yes and Orlando_Bloom = Yes, then movie success among females aged 20-40
- If Nasdaq_Computer_Index = Gain and Apple announces new Ipad, then AAPL_Stock = Buy
• if $3 \times \text{exam_grade} + 2 \times \text{HW_grade} > 55$, then student can pass
• if $\frac{\text{blood_pressure}}{\log(\text{age})} > 3$, recommend medicine
• if $\text{rent} + \text{food} + \text{bills} < \frac{1}{2} \text{salary}$, loan for $\frac{1}{2}$ salary possible
Matrix data / training VS testing

AUTO	REL	BUL	CYR	CZE	DEN	EST	FIN	FRA	GBR	GRC	HUN	ITA	LAT	LIT	LUX	MLT	NLD	POL	POR	ROM	SVE	SLO	ESP	SWE	GER		
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04

- **testing set has to be independent of training set**
 - or else testing result is inconclusive
 - and not reliable
- usually the data is partitioned before running any ML algorithm
Overfitting

- might be capable to create a model that essentially memorizes all training dataset
 - for example a decision tree deep enough
- that is not useful: the purpose of the learning model is to applicable to new data (testing)
Overfitting

- might be capable to create a model that essentially memorizes all training dataset
 - for example a decision tree deep enough
- that is not useful: the purpose of the learning model is to applicable to new data (testing)
Overfitting

- as we keep training (insisting on ability to classify training set), the performance on the training set (green) becomes unrealistically small
 - model becomes more complex
- but at the same time ability to predict/classify new data (pink) worsens
Cross Validation Setup

- **Split Data in K Folds**
- **Execute K Independent Learning Trials**:
 - Train on K-1 folds
 - Test on remaining fold
- **Measure Testing Performance**
- **Average Results across K Trials**
for objects like text documents or images:
- extract features (to obtain matrix form)
- annotate (to obtain labels)
• about 4000 emails
• 54 features numerical
• two classes: spam / no_spam
Housing dataset

- 1300 houses
- 13 features (numerical)
- label: purchase prices (quantitative)
Digits dataset

- 60000 images of scanned digits
- 26x26 pixel per image, black or white
- features not extracted
- 10 classes: 0, 1, 2, ..., 9
Documents dataset

- 20,000 news articles (text)
- features not extracted
- 20 categories: religion, music, computers, sports, etc.
main focus: learning algorithms
main focus: hands-on practice on datasets
secondary focus: analysis, error measurement
secondary focus: features, representation
typical module subtasks / objectives

• THEORY
 - explain/understand fundamental mechanism
 - proof (math, intuition)
 - pseudocode

• CODE
 - run existing code
 - implement and demo your code
 - data handling: features, dimensionality, scale, missing values, normalization
 - computational issues: memory, cache, CPU, disk

• EVALUATION
 - setup
 - performance measurement, comparison
 - analysis/failure of procedure behavior

• HOWTO
 - practical advise, hacks, heuristics
 - communicate on topic well: email, forums
 - where to look online