Introduction to Dynamic Networks
Models, Algorithms, and Analysis

Rajmohan Rajaraman, Northeastern U.
www.ccs.neu.edu/home/rraj/Talks/DynamicNetworks/DYNAMO/
June 2006
Many Thanks to...

- Filipe Araujo, Pierre Fraigniaud, Luis Rodrigues, Roger Wattenhofer, and organizers of the summer school

- All the researchers whose contributions will be discussed in this tutorial
What is a Network?

General undirected or directed graph
Classification of Networks

- **Synchronous:**
 - Messages delivered within one time unit
 - Nodes have access to a common clock

- **Asynchronous:**
 - Message delays are arbitrary
 - No common clock

- **Static:**
 - Nodes never crash
 - Edges maintain operational status forever

- **Dynamic:**
 - Nodes may come and go
 - Edges may crash and recover
Dynamic Networks: What?

- **Network dynamics:**
 - The network topology changes over times
 - Nodes and/or edges may come and go
 - Captures faults and reliability issues

- **Input dynamics:**
 - Load on network changes over time
 - Packets to be routed come and go
 - Objects in an application are added and deleted
Dynamic Networks: How?

• **Duration:**
 - **Transient:** The dynamics occur for a short period, after which the system is static for an extended time period
 - **Continuous:** Changes are constantly occurring and the system has to constantly adapt to them

• **Control:**
 - Adversarial
 - Stochastic
 - Game-theoretic
Dynamic Networks are Everywhere

• **Internet**
 – The network, traffic, applications are all dynamically changing

• **Local-area networks**
 – Users, and hence traffic, are dynamic

• **Mobile ad hoc wireless networks**
 – Moving nodes
 – Changing environmental conditions

• **Communication networks, social networks, Web, transportation networks, other infrastructure**
Adversarial Models

• Dynamics are controlled by an adversary
 – Adversary decides when and where changes occur
 – Edge crashes and recoveries, node arrivals and departures
 – Packet arrival rates, sources, and destinations

• For meaningful analysis, need to constrain adversary
 – Maintain some level of connectivity
 – Keep packet arrivals below a certain rate
Stochastic Models

• Dynamics are described by a probabilistic process
 – Neighbors of new nodes randomly selected
 – Edge failure/recovery events drawn from some probability distribution
 – Packet arrivals and lengths drawn from some probability distribution

• Process parameters are constrained
 – Mean rate of packet arrivals and service time distribution moments
 – Maintain some level of connectivity in network
Game-Theoretic Models

• Implicit assumptions in previous two models:
 – All network nodes are under **one administration**
 – Dynamics through **external influence**

• Here, each node is a potentially independent agent
 – Own utility function, and rationally behaved
 – Responds to actions of other agents
 – Dynamics through their interactions

• Notion of stability:
 – Nash equilibrium
Design & Analysis Considerations

• Distributed computing:
 – For static networks, can do pre-processing
 – For dynamic networks (even with transient dynamics), need distributed algorithms

• Stability:
 – Transient dynamics: Self-stabilization
 – Continuous dynamics: Resources bounded at all times
 – Game-theoretic: Nash equilibrium

• Convergence time

• Properties of stable states:
 – How much resource is consumed?
 – How well is the network connected?
 – How far is equilibrium from socially optimal?
Five Illustrative Problem Domains

• Spanning trees
 – Transient dynamics, self-stabilization
• Load balancing
 – Continuous dynamics, adversarial input
• Packet routing
 – Transient & continuous dynamics, adversarial
• Queuing systems
 – Adversarial input
• Network evolution
 – Stochastic & game-theoretic
Spanning Trees
Spanning Trees

• One of the most fundamental network structures
• Often the basis for several distributed system operations including leader election, clustering, routing, and multicast
• Variants: any tree, BFS, DFS, minimum spanning trees
Spanning Tree in a Static Network

- Assumption: Every node has a unique identifier
- The largest id node will become the root
- Each node \(v \) maintains distance \(d(v) \) and next-hop \(h(v) \) to largest id node \(r(v) \) it is aware of:
 - Node \(v \) propagates \((d(v), r(v))\) to neighbors
 - If message \((d, r)\) from \(u \) with \(r > r(v) \), then store \((d+1, r, u)\)
 - If message \((d, r)\) from \(p(v) \), then store \((d+1, r, p(v))\)
Spanning Tree in a Dynamic Network

- Suppose node 8 crashes
- Nodes 2, 4, and 5 detect the crash
- Each separately discards its own triple, but believes it can reach 8 through one of the other two nodes
 - Can result in an infinite loop
- How do we design a self-stabilizing algorithm?
Exercise

• Consider the following spanning tree algorithm in a synchronous network
• Each node v maintains distance $d(v)$ and next-hop $h(v)$ to largest id node $r(v)$ it is aware of
• In each step, node v propagates $(d(v), r(v))$ to neighbors
• On receipt of a message:
 – If message (d, r) from u with $r > r(v)$, then store $(d+1, r, u)$
 – If message (d, r) from $p(v)$, then store $(d+1, r, p(v))$
• Show that there exists a scenario in which a node fails, after which the algorithm never stabilizes
Self-Stabilization

• Introduced by Dijkstra [Dij74]
 – Motivated by fault-tolerance issues [Sch93]
 – Hundreds of studies since early 90s

• A system S is self-stabilizing with respect to predicate P
 – Once P is established, P remains true under no dynamics
 – From an arbitrary state, S reaches a state satisfying P
 within finite number of steps

• Applies to transient dynamics

• Super-stabilization notion introduced for continuous dynamics [DH97]
Self-Stabilizing ST Algorithms

- Dozens of self-stabilizing algorithms for finding spanning trees under various models [Gär03]
 - Uniform vs non-uniform networks
 - Fixed root vs non-fixed root
 - Known bound on the number of nodes
 - Network remains connected

- Basic idea:
 - Some variant of distance vector approach to build a BFS
 - Symmetry-breaking
 - Use distinguished root or distinct ids
 - Cycle-breaking
 - Use known upper bound on number of nodes
 - Local detection paradigm
Self-Stabilizing Spanning Tree

- Suppose upper bound N known on number of nodes [AG90]
- Each node v maintains distance $d(v)$ and parent $h(v)$ to largest id node $r(v)$ it is aware of:
 - Node v propagates $(d(v), r(v))$ to neighbors
 - If message (d, r) from u with $r > r(v)$, then store $(d+1, r, u)$
 - If message (d, r) from $p(v)$, then store $(d+1, r, p(v))$
- If $d(v)$ exceeds N, then store $(0, v, v)$: breaks cycles
Self-Stabilizing Spanning Tree

• Suppose upper bound N not known [AKY90]
• Maintain triple \((d(v), r(v), p(v))\) as before
 – If \(v > r(u)\) of all of its neighbors, then store \((0, v, v)\)
 – If message \((d, r)\) received from \(u\) with \(r > r(v)\), then \(v\) “joins” this tree
 • Sends a join request to the root \(r\)
 • On receiving a grant, \(v\) stores \((d+1, r, u)\)
 – Other local consistency checks to ensure that cycles and fake root identifiers are eventually detected and removed
Spanning Trees: Summary

• Model:
 – Transient adversarial network dynamics

• Algorithmic techniques:
 – Symmetry-breaking through ids and/or a distinguished root
 – Cycle-breaking through sequence numbers or local detection

• Analysis techniques:
 – Self-stabilization paradigm

• Other network structures:
 – Hierarchical clustering
 – Spanners (related to metric embeddings)
Load Balancing
Load Balancing

- Each node v has $w(v)$ tokens
- **Goal**: To balance the tokens among the nodes
- **Imbalance**: $\max_{u,v} |w(u) - w_{avg}|$
- In each step, each node can send at most one token to each of its neighbors
• In a truly balanced configuration, we have $|w(u) - w(v)| \leq 1$
• Our goal is to achieve fast approximate balancing
• Preprocessing step in a parallel computation
• Related to routing and counting networks [PU89, AHS91]
Local Balancing

• Each node compares its number of tokens with its neighbors
• In each step, for each edge \((u,v)\):
 - If \(w(u) > w(v) + 2d\), then \(u\) sends a token to \(v\)
 - Here, \(d\) is maximum degree of the network
• Purely local operation
Convergence to Stable State

- How long does it take local balancing to converge?
- What does it mean to converge?
 - Imbalance is “constant” and remains so
- What do we mean by “how long”?
 - The number of time steps it takes to achieve the above imbalance
 - Clearly depends on the topology of the network and the imbalance of the original token distribution
Expansion of a Network

- Edge expansion α:
 - Minimum, over all sets S of size $\leq n/2$, of the term $|E(S)|/|S|$

- Lower bound on convergence time:
 $$\frac{(w(S) - |S| \cdot w_{avg})}{E(S)} = \frac{(w(S)/|S| - w_{avg})}{\alpha}$$

Expansion = $12/6 = 2$

$w_{avg} = 3$

Lower bound = $(29 - 18)/12$
Properties of Local Balancing

- For any network G with expansion α, any token distribution with imbalance Δ converges to a distribution with imbalance $O(d \cdot \log(n) / \alpha)$ in $O(\Delta / \alpha)$ steps [AAMR93, GLM+99]

- Analysis technique:
 - Associate a potential with every node v, which is a function of the $w(v)$
 - Example: $(w(v) - \text{avg})^2$, $c^{w(v) - \text{avg}}$
 - Potential of balanced configuration is small
 - Argue that in every step, the potential decreases by a desired amount (or fraction)
 - Potential decrease rate yields the convergence time

- There exist distributions with imbalance Δ that would take $\Omega(\Delta / \alpha)$ steps
Exercise

• For any graph G with edge expansion α, show that there is an initial distribution with imbalance Δ such that the time taken to reduce the imbalance by even half is $\Omega(\Delta/\alpha)$ steps.
Local Balancing in Dynamic Networks

• The “purely local” nature of the algorithm useful for dynamic networks

• Challenge:
 – May not “know” the correct load on neighbors since links are going up and down

• Key ideas:
 – Maintain an estimate of the neighbors’ load, and update it whenever the link is live
 – Be more conservative in sending tokens

• Result:
 – Essentially same as for static networks, with a slightly higher final imbalance, under the assumption that the set of live edges form a network with edge expansion α at each step
Adversarial Load Balancing

- Dynamic load [MR02]
 - Adversary inserts and/or deletes tokens
- In each step:
 - Balancing
 - Token insertion/deletion
- For any set S, let $d_t(S)$ be the change in number of tokens at step t
- Adversary is constrained in how much imbalance can be increased in a step
- Local balancing is stable against rate 1 adversaries [AKK02]

$$d_t(S) - (\text{avg}_{t+1} - \text{avg}_t)|S| \leq r \cdot e(S)$$
Stochastic Adversarial Input

- Studied under a different model [AKU05]
 - Any number of tokens can be exchanged per step, with one neighbor
- Local balancing in this model [GM96]
 - Select a random matching
 - Perform balancing across the edges in matching
- Load consumed by nodes
 - One token per step
- Load placed by adversary under statistical constraints
 - Expected injected load within window of w steps is at most $r n w$
 - The pth moment of total injected load is bounded, $p > 2$
- Local balancing is stable if $r < 1$
Load Balancing: Summary

- **Algorithmic technique:**
 - Local balancing

- **Design technique:**
 - Obtain a purely distributed solution for static network, emphasizing local operations
 - Extend it to dynamic networks by maintaining estimates

- **Analysis technique:**
 - Potential function method
 - Martingales
Packet Routing
The Packet Routing Problem

- Given a network and a set of packets with source-destination pairs
 - Path selection: Select paths between sources and respective destinations
 - Packet forwarding: Forward the packets to the destinations along selected paths

- Dynamics:
 - Network: edges and their capacities
 - Input: Packet arrival rates and locations

- Interconnection networks [Lei91], Internet [Hui95], local-area networks, ad hoc networks [Per00]
Packet Routing: Performance

- **Static packet set:**
 - Congestion of selected paths: Number of paths that intersect at an edge/node
 - Dilation: Length of longest path

- **Dynamic packet set:**
 - Throughput: Rate at which packets can be delivered to their destination
 - Delay: Average time difference between packet release at source and its arrival at destination

- **Dynamic network:**
 - Communication overhead due to a topology change
 - In highly dynamic networks, eventual delivery?

- **Compact routing:**
 - Sizes of routing tables
Routing Algorithms Classification

- **Global:**
 - All nodes have complete topology information

- **Decentralized:**
 - Nodes know information about neighboring nodes and links

- **Proactive:**
 - Nodes constantly react to topology changes always maintaining routes of desired quality

- **Static:**
 - Routes change rarely over time

- **Dynamic:**
 - Topology changes frequently requiring dynamic route updates

- **Reactive:**
 - Nodes select routes on demand
Link State Routing

• Each node periodically broadcasts state of its links to the network
• Each node has current state of the network
• Computes shortest paths to every node
 – Dijkstra’s algorithm
• Stores next hop for each destination
Link State Routing, contd

- When link state changes, the broadcasts propagate change to entire network
- Each node recomputes shortest paths
- High communication complexity
- Not effective for highly dynamic networks
- Used in intra-domain routing
 - OSPF
Distance Vector Routing

- Distributed version of Bellman-Ford’s algorithm
- Each node maintains a distance vector
 - Exchanges with neighbors
 - Maintains shortest path distance and next hop
- Basic version not self-stabilizing
 - Use bound on number of nodes or path length
 - Poisoned reverse
Distance Vector Routing

• Basis for two routing protocols for mobile ad hoc wireless networks
• DSDV: proactive, attempts to maintain routes
• AODV: reactive, computes routes on-demand using distance vectors [PBR99]
Link Reversal Routing

- Aimed at dynamic networks in which finding a single path is a challenge [GB81]
- Focus on a destination D
- Idea: Impose direction on links so that all paths lead to D
- Each node has a height
 - Height of $D = 0$
 - Links are directed from high to low
- D is a sink
- By definition, we have a directed cyclic graph
Setting Node Heights

- If destination D is the only sink, then all directed paths lead to D
- If another node is a sink, then it reverses all links:
 - Set its height to 1 more than the max neighbor height
- Repeat until D is only sink
- A potential function argument shows that this procedure is self-stabilizing
Exercise

• For tree networks, show that the link reversal algorithm self-stabilizes from an arbitrary state
Issues with Link Reversal

• A local disruption could cause global change in the network
 – The scheme we studied is referred to as full link reversal
 – Partial link reversal

• When the network is partitioned, the component without sink has continual reversals
 – Proposed protocol for ad hoc networks (TORA) attempts to avoid these [PC97]

• Need to maintain orientations of each edge for each destination

• Proactive: May incur significant overhead for highly dynamic networks
Routing in Highly Dynamic Networks

- Highly dynamic network:
 - The network may not even be connected at any point of time
- Problem: Want to route a message from source to sink with small overhead
- Challenges:
 - Cannot maintain any paths
 - May not even be able to find paths on demand
 - May still be possible to route!
End-to-End Communication

- Consider basic case of one source-destination pair
- Need redundancy since packet sent in wrong direction may get stuck in disconnected portion!
- Slide protocol (local balancing) [AMS89, AGR92]
 - Each node has an ordered queue of at most n slots for each incoming link (same for source)
 - Packet moved from slot i at node v to slot j at the (v,u)-queue of node u only if j < i
 - All packets absorbed at destination
 - Total number of packets in system at most $C = O(nm)$
End-to-End Communication

- End-to-end communication using slide
- For each data item:
 - Sender sends $2C+1$ copies of item (new token added only if queue is not full)
 - Receiver waits for $2C+1$ copies and outputs majority
- Safety: The receiver output is always prefix of sender input
- Liveness: If the sender and the receiver are eventually connected:
 - The sender will eventually input a new data item
 - The receiver eventually outputs the data item
- Strong guarantees considering weak connectivity
- Overhead can be reduced using coding e.g. [Rab89]
Routing Through Local Balancing

- Multi-commodity flow [AL94]
- Queue for each flow’s packets at head and tail of each edge
- In each step:
 - New packets arrive at sources
 - Packet(s) transmitted along each edge using local balancing
 - Packets absorbed at destinations
 - Queues balanced at each node
- Local balancing through potentials
 - Packets sent along edge to maximize potential drop, subject to capacity
- Queues balanced at each node by simply distributing packets evenly

\[\varphi_k(q) = \exp(\epsilon q / (8L d_k)) \]

L = longest path length
\(d_k \) = demand for flow k
Routing Through Local Balancing

- Edge capacities can be **dynamically and adversarially** changing
- If there exists a feasible flow that can route d_k flow for all k:
 - This routing algorithm will route $(1-\varepsilon)d_k$ for all k
- **Crux of the argument:**
 - Destination is a sink and the source is constantly injecting new flow
 - Gradient in the direction of the sink
 - As long as feasible flow paths exist, there are paths with potential drop
- Follow-up work has looked at packet delays and multicast problems
 \[\varphi_k(q) = \exp(\varepsilon q/(8Ld_k)) \]
 \[L = \text{longest path length} \]
 \[d_k = \text{demand for flow } k \]

\[\text{[ABBS01, JRS03]} \]
Packet Routing: Summary

• Models:
 – Transient and continuous dynamics
 – Adversarial

• Algorithmic techniques:
 – Distance vector
 – Link reversal
 – Local balancing

• Analysis techniques:
 – Potential function
Queuing Systems
Packet Routing: Queuing

- We now consider the second aspect of routing: queuing
- Edges have finite capacity
- When multiple packets need to use an edge, they get queued in a buffer
- Packets forwarded or dropped according to some order
Packet Queuing Problems

- In what order should the packets be forwarded?
 - First in first out (FIFO or FCFS)
 - Farthest to go (FTG), nearest to go (NTG)
 - Longest in system (LIS), shortest in system (SIS)

- Which packets to drop?
 - Tail drop
 - Random early detection (RED)

- Major considerations:
 - Buffer sizes
 - Packet delays
 - Throughput

- Our focus: forwarding
Dynamic Packet Arrival

• Dynamic packet arrivals in static networks
 – Packet arrivals: when, where, and how?
 – Service times: how long to process?

• Stochastic model:
 – Packet arrival is a stochastic process
 – Probability distribution on service time
 – Sources, destinations, and paths implicitly constrained by certain load conditions

• Adversarial model:
 – Deterministic: Adversary decides packet arrivals, sources, destinations, paths, subject to deterministic load constraints
 – Stochastic: Load constraints are stochastic
(Stochastic) Queuing Theory

- Rich history \([\text{Wal88, Ber92}]\)
 - Single queue, multiple parallel queues very well-understood

- Networks of queues
 - Hard to analyze owing to dependencies that arise downstream, even for independent packet arrivals
 - Kleinrock independence assumption
 - Fluid model abstractions

- Multiclass queuing networks:
 - Multiple classes of packets
 - Packet arrivals by time-invariant independent processes
 - Service times within a class are indistinguishable
 - Possible priorities among classes
Load Conditions & Stability

• **Stability**:
 – Finite upper bound on queues & delays

• **Load constraint**:
 – The rate at which packets need to traverse an edge should not exceed its capacity

• Load conditions are not sufficient to guarantee stability of a greedy queuing policy [LK91, RS92]
 – FIFO can be unstable for arbitrarily small load [Bra94]
 – Different service distributions for different classes

• For independent and time-invariant packet arrival distributions, with class-independent service times [DM95, RS92, Bra96]
 – FIFO is stable as long as basic load constraint holds
Adversarial Queuing Theory

- Directed network
- Packets, released at source, travel along specified paths, absorbed at destination
- In each step, at most one packet sent along each edge
- Adversary injects requests:
 - A request is a packet and a specified path
- Queuing policy decides which packet sent at each step along each edge
- [BKR+96, BKR+01]

![Diagram of a network with labeled nodes A, B, C, D, E, F, G, H, and arrows indicating paths.]
Load Constraints

- Let $N(T, e)$ be the number of paths injected during interval T that traverse edge e.

- (w, r)-adversary:
 - For any interval T of w consecutive time steps, for every edge e:
 \[N(T, e) \leq w \cdot r \]
 - Rate of adversary is r.

- (w, r) stochastic adversary:
 - For any interval $[t+1...t+w]$, for every edge e:
 \[E[N(T, e)|H_t] \leq w \cdot r \]

\[\text{Area} \leq w \cdot r \]
Stability in DAGs

- Theorem: For any dag, any greedy policy is stable against any rate-1 adversary
- $A_t(e) = \#$ packets in network at time t that will eventually use e
- $Q_t(e) = \text{queue size for } e \text{ at time } t$
- Proof: time-invariant upper bound on $A_t(e)$

Large queue: $Q_{t-w}(e) \geq w \Rightarrow A_t(e) \leq A_{t-w}(e)$

Small queue: $Q_{t-w}(e) < w \Rightarrow A_{t-w}(e) \leq w + \sum_j A_{t-w}(e_j)$

$A_t(e) \leq 2w + \sum_j A_{t-w}(e_j)$
Extension to Stochastic Adversaries

- Theorem: In DAGs, any greedy policy is stable against any stochastic $1-\varepsilon$ rate adversary, for any $\varepsilon > 0$
- Cannot claim a hard upper bound on $A_t(e)$
- Define a potential φ_t, that is an upper bound on the number of packets in system
- Show that if the potential is larger than a specified constant, then there is an expected decrease in the next step
- Invoke results from martingale theory to argue that $E[\varphi_t]$ is bounded by a constant
FIFO is Unstable [A+ 96]

• Initially: s packets waiting at A to go to C
• Next s steps:
 – rs packets for loop
 – rs packets for B-C
• Next rs steps:
 – r^2s packets from B to A
 – r^2s packets for B-C
• Next r^2s steps:
 – r^3s packets for C-A
• Now: s+1 packets waiting at C going to A
• FIFO does not use edges most effectively
Stability in General Networks

• LIS and SIS are universally stable against rate <1 adversaries [AAF+96]

• Furthest-To-Go and Nearest-To-Origin are stable even against rate 1 adversaries [Gam99]

• Bounds on queue size:
 – Mostly exponential in the length of the shortest path
 – For DAGs, Longest-In-System (LIS) has poly-sized queues

• Bounds on packet delays:
 – A variant of LIS has poly-sized packet delays
Exercise

• Are the following two equivalent? Is one stronger than the other?
 – A finite bound on queue sizes
 – A finite bound on delay of each packet
Queuing Theory: Summary

- Focus on input dynamics in static networks
- Both stochastic and adversarial models
- Primary concern: stability
 - Finite bound on queue sizes
 - Finite bound on packet delays
- Algorithmic techniques: simple greedy policies
- Analysis techniques:
 - Potential functions
 - Markov chains and Markov decision processes
 - Martingales
Network Evolution
How do Networks Evolve?

• Internet
 – New random graph models
 – Developed to support observed properties

• Peer-to-peer networks
 – Specific structures for connectivity properties
 – Chord [SMK+01], CAN [RFH+01], Oceanstore [KBC+00], D2B [FG03], [PRU01], [LNBK02], ...

• Ad hoc networks
 – Connectivity & capacity [GK00...]
 – Mobility models [BMJ+98, YLN03, LNR04]
Internet Graph Models

- Internet measurements [FFF99, TGJ+02, ...]:
 - Degrees follow heavy-tailed distribution at the AS and router levels
 - Frequency of nodes with degree d is proportional to $1/d^\beta$, $2 < \beta < 3$

- Models motivated by these observations
 - Preferential attachment model [BA99]
 - Power law graph model [ACL00]
 - Bicriteria optimization model [FKP02]
Preferential Attachment

- Evolutionary model [BA99]
- Initial graph is a clique of size \(d+1 \)
 - \(d \) is degree-related parameter
- In step \(t \), a new node arrives
- New node selects \(d \) neighbors
- Probability that node \(j \) is neighbor is proportional to its current degree
- Achieves power law degree distribution
Power Law Random Graphs

• Structural model [ACL00]
• Generate a graph with a specified degree sequence \((d_1,\ldots,d_n)\)
 – Sampled from a power law degree distribution
• Construct \(d_j\) mini-vertices for each \(j\)
• Construct a random perfect matching
• Graph obtained by adding an edge for every edge between mini-vertices
• Adapting for Internet:
 – Prune 1- and 2-degree vertices repeatedly
 – Reattach them using random matchings
Bicriteria Optimization

- Evolutionary model
- Tree generation with power law degrees [FKP02]
- All nodes in unit square
- When node j arrives, it attaches to node k that minimizes:
 $$\alpha \cdot d_{jk} + h_k$$
 - Degrees distributed as power law for some β, dependent on α
- If $4 \leq \alpha \leq o(\sqrt{n})$:
 - Degrees distributed as power law for some β, dependent on α
- Can be generalized, but no provable results known

h_k: measure of centrality of k in tree
Connectivity & Capacity Properties

- Congestion in certain uniform multicommodity flow problems:
 - Suppose each pair of nodes is a source-destination pair for a unit flow
 - What will be the congestion on the most congested edge of the graph, assuming uniform capacities
 - Comparison with expander graphs, which would tend to have the least congestion
- For power law graphs with constant average degree, congestion is $O(n \log^2 n)$ with high probability [GMS03]
 - $\Omega(n)$ is a lower bound
- For preferential attachment model, congestion is $O(n \log n)$ with high probability [MPS03]
- Analysis by proving a lower bound on conductance, and hence expansion of the network
Network Creation Game

- View Internet as the product of the interaction of many economic agents
- Agents are nodes and their strategy choices create the network
- Strategy s_j of node j:
 - Edges to a subset of the nodes
- Cost c_j for node j:
 - $\alpha \cdot |s_j| + \sum_k d_{G(s)}(j,k)$
 - Hardware cost plus quality of service costs $3\alpha + \text{sum of distances to all nodes}$
Network Creation Game

- In the game, each node selects the best response to other nodes’ strategies
- Nash equilibrium s:
 - For all j, $c_j(s) \leq c_j(s')$ for all s' that differ from s only in the jth component
- Price of anarchy [KP99]:
 - Maximum, over all Nash equilibria, of the ratio of total cost in equilibrium to smallest total cost
- Bound, as a function of α [AEED06]:
 - $O(1)$ for $\alpha = O(\sqrt{n})$ or $\Omega(n \log n)$
 - Worst-case ratio $O(n^{1/3})$
Other Network Games

• Variants of network creation games
 – Weighted version [AEED06]
 – Cost and benefit tradeoff [BG00]

• Cost sharing in network design [JV01, ADK04, GST04]

• Congestion games [RT00, Rou02]
 – Each source-destination pair selects a path
 – Delay on edge is a function of the number of flows that use the edge
Network Evolution: Summary

• Models:
 – Stochastic
 – Game-theoretic

• Analysis techniques:
 – Graph properties, e.g., expansion, conductance
 – Probabilistic techniques
 – Techniques borrowed from random graphs