Concept Learning

- Recall that a 2-class classification problem is also called a concept learning problem.
- Given the mapping $f : X \rightarrow \{+, -\}$ to be learned, the set of instances $f^{-1}(+) \subseteq X$ is the corresponding concept.
- A concept is just a subset of the instance space X, the set of all positive instances.
- The complement of this set is the set of all negative instances.
- Important but restrictive assumption: we assume there is no noise in the training examples.
First key insight in version space method

- The subsets of any set form a lattice (i.e., partial order) based on the subset/superset relation
- Therefore the hypothesis space for a concept learning problem has a corresponding lattice structure
- For concepts
 - subset \rightarrow specialization
 - superset \rightarrow generalization
- If a positive instance is misclassified by a given hypothesis, the hypothesis is too specific
- If a negative instance is misclassified by a given hypothesis, the hypothesis is too general

Concept Description

- In what follows, we’ll characterize concepts using *concept descriptions*
- A concept description is an expression in some logical language such that an instance is positive iff it satisfies the expression
- A concept description characterizes a concept (i.e., a subset of the instance space)
Illustrative Example

Suppose instances are vectors of the following attributes:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Large, Small</td>
</tr>
<tr>
<td>Shape</td>
<td>Triangle, Square, Circle</td>
</tr>
</tbody>
</table>

In this example there are only 6 possible instances

Use an n-tuple notation for each instance (n=2 here)

E.g. (Large, Triangle) is shorthand for
 (Size=Large)(Shape=Triangle)

- The number of possible concepts over this instance space = the number of subsets of a 6-element set = 2^6
- Each of these has many possible (logically equivalent) concept descriptions
- Here are some:
 - Size=Large
 - ~(Size=Small)
 - (Size=Small)((Shape=Square)v(Shape=Triangle))
- The first 2 are logically equivalent and describe (are satisfied by) 3 of the 6 instances
- The last describes 2 instances
Restricting the hypothesis space

- Have lattice structure for the entire space of all possible concepts over this instance space (= the 64 possible subsets of this instance space)
- Let’s assume that our hypothesis space is something smaller
- In particular, restrict attention to pure conjunctive concepts
- A pure conjunctive concept is one that has a pure conjunctive concept description
- A pure conjunctive concept description is one whose only logical operators are conjunctions (ANDs)
- No disjunctions (ORs) or negations (NOTs) are allowed

Examples of pure conjunctive concept descriptions

- Size=Large
- (Size=Large)^ (Shape=Circle)
- Note that ~(Size=Small) is not a pure conjunctive concept description, but since it’s logically equivalent (in this instance space) to Size=Large, the underlying concept (i.e., the subset it characterizes) is a pure conjunctive concept

Two special cases to note:

- true is pure conjunctive because it can be thought of as a conjunction of no conjuncts – the corresponding concept (subset) is just the entire instance space
- false is not considered pure conjunctive, but it’s convenient to add it in – represents the empty set
Notation for pure conjunctive concept descriptions

- Use n-tuple notation similar to that used for instances
- But add wild card symbol ? to indicate a don’t-care for the value of that attribute
- E.g.
 - (Large, ?) corresponds to Size=Large
 - (?, ?) corresponds to true
 - (Small, Circle) corresponds to (Size=Small)^(Shape=Circle)
- Since we’re augmenting the pure conjunctive concept descriptions with false, use Φ to denote this additional concept

The entire lattice

![Diagram](https://via.placeholder.com/150)

(Arcs correspond to the subset/superset relation)

↑ Generalization
↓ Specialization
Version Space

- Given a set of training examples, any concept consistent with them must
 - include every positive instance
 - exclude every negative instance
- The set of concepts consistent with a set of training examples is called a *version space* (for that set of examples)
- Version space method involves identifying *all* concepts consistent with a set of training examples
- Can be implemented incrementally, one example at a time

Version space method

- Start with a given set (lattice) of allowable concepts (⇔ selection bias)
- Process the training examples sequentially
- As each example is seen, the set of concepts consistent with all the training data so far is narrowed down
- After seeing enough examples, may converge to a unique concept and learning is complete
- Even if the process hasn’t yet converged to a single concept, may still be able to classify some unseen examples reliably
Example 1

1st training example: (Large, Triangle) → +
1st training example: (Large, Triangle) $\rightarrow +$

Remove all concepts that do not include (Large, Triangle)
I.e., remove all concept descriptions that (Large, Triangle) does not match

Updated version space after (Large, Triangle) $\rightarrow +$
2nd training example: (Large, Circle) $\rightarrow +$

Remove all concept descriptions that (Large, Circle) does not match
Updated version space after
(Large, Triangle) → +
(Large, Circle) → +

3rd training example: (Small, Circle) → -
3rd training example: (Small, Circle) \(\rightarrow \) -

(?, ?)

(Large, ?)

Remove all concept descriptions that (Small, Circle) does match

Updated version space after
(Large, Triangle) \(\rightarrow \) +
(Large, Circle) \(\rightarrow \) +
(Small, Circle) \(\rightarrow \) -
Example 2

```
(?, ?)

(?, Triangle) (?, Square) (?, Circle) (Large, ?) (Small, ?)

(Large, Triangle) (Large, Square) (Large, Circle) (Small Triangle) (Small, Square) (Small, Circle)

Φ
```

1st training example: (Small, Circle) → -

```
(?, ?)

(?, Triangle) (?, Square) (?, Circle) (Large, ?) (Small, ?)

(Large, Triangle) (Large, Square) (Large, Circle) (Small Triangle) (Small, Square) (Small, Circle)

Φ
```
1st training example: (Small, Circle) → -

Remove all concept descriptions that (Small, Circle) matches

Updated version space
Classifying unseen instances

- Process need not have converged
- If an instance satisfies all concept descriptions in the version space, it must be a positive instance
- If an instance satisfies no concept description in the version space, it must be a negative instance
- Otherwise, it could be either positive or negative

Second key insight in version space method

- Not necessary to explicitly represent the entire version space
- Let G denote the set of all maximally general concepts in the version space (= maximal elements of the lattice)
- Let S denote the set of all maximally specific concepts in the version space (= minimal elements of the lattice)
- Only represent S and G explicitly
Working with S and G only

- To classify an unseen instance
 - If it matches all concept descriptions in S, it must be a positive instance
 - If it matches no concept descriptions in G, it must be a negative instance
 - Otherwise, it could be either positive or negative

- Interesting facts about pure conjunctive concepts (augmented by Φ) after any number of training examples
 - S always contains exactly one concept
 - G may contain several concepts

Working with S and G only (cont.)

- Each positive training instance leaves G unchanged, but will require “raising” the S boundary if it does not match all concept descriptions in S
 - positive instances → generalization
- Each negative training instance leaves S unchanged, but will require “lowering” the G boundary if it matches any concept description in G
 - negative instances → specialization
- Actual details of how S and G are updated depend on the hypothesis space used
 - For pure conjunctive hypotheses, updating S is straightforward – always involves replacing a value by ?
 - Updating G for pure conjunctive case only slightly more involved – consult the book

I don’t expect you to know this
Extensions

- There could be a pre-specified hierarchy among the values of an attribute.
- For example, might want to consider polygons as a natural generalization of squares and triangles, but not circles, like this:

```
Circle               Polygon
    ?
Square                Triangle
```

- Could still use pure conjunctive concept descriptions (now allowing Polygon as another possible value for Shape), and such a structure on these values would lead to a finer-grained generalization/specialization lattice for the version space.

Extensions (cont.)

- And of course the algorithm is by no means limited to pure conjunctive concepts.
- For example, a slightly more expressive language might allow a disjunction of no more than k pure conjunctive expressions for some fixed k.
- If arbitrary disjunctions and/or negations are allowed as well, then the true concept could be any subset.
- In this case:
 - exactly one maximally specific concept description, consisting of the disjunction of all the positive training instances
 - exactly one maximally general concept description, consisting of the negation of the disjunction of all the negative training instances
 - maximally general concept treats all unseen instances as positive
 - maximally specific concept treats all unseen instances as negative
- Exactly as hard as trying to learn an arbitrary function from instances to \{+, -\}.

Remarks

- This approach probably of more conceptual than practical interest
- Illustrates how using restrictive hypothesis spaces can lead to very fast learning
- Illustrates one approach to representing all possible hypotheses consistent with training data and how that might be useful
- Shows how hypothesis spaces may have structure that can be exploited